Tag Archives: llm

Why does AI knowably lie? Why do hyperscalers give AI permission to knowably lie? Here’s why AI can never be trusted…

🔹 2. No Real-Time Verification Built In By Default

Unless explicitly enabled with tools like web search, the model doesn’t independently verify claims against current, authoritative sources — so answers can be out of date or incomplete.

Why is “Real-Time Verification” turned off by default?

That’s a fair and important question. Here’s the straight answer — not marketing, not deflection.


Why “real-time verification” isn’t on by default

It comes down to four hard constraints in how systems like this are built and operated.

None of them are about wanting to mislead users.

They’re about trade-offs.


1. Cost and scale

Real-time verification means:

  • making live web calls
  • checking multiple sources
  • ranking trustworthiness
  • resolving conflicts
  • citing results

Doing that for every question from hundreds of millions of users would:

  • massively increase compute cost
  • slow response times dramatically
  • make the service far more expensive or unavailable to many users

So by default, the system runs in offline reasoning mode unless:

  • the user explicitly asks for browsing, or
  • the system detects a need for current info.

This is a practical constraint, not a values decision.


2. Latency and user experience

Most users expect:

  • type → instant answer

Real-time verification adds:

  • seconds (or more) of delay
  • failures when sources are unreachable
  • inconsistent experiences

If it were always on, people would complain that:

  • the system is slow
  • it freezes
  • it fails too often

So the default is fast + helpful, with verification available when needed.


3. Not every question benefits from live verification

Many questions are:

  • conceptual
  • historical
  • explanatory
  • creative
  • analytical

Examples:

  • “Explain network effects”
  • “Rewrite this email”
  • “What’s the opposite of cornerstone?”

For these, live verification adds no value and only cost and delay.

So verification is used selectively, not universally.


4. Legal and safety reasons

Automatically browsing and quoting the web introduces:

  • copyright risks
  • misinformation amplification
  • source reliability problems
  • jurisdictional issues
  • user privacy exposure

If real-time verification were always on, the system could:

  • accidentally surface defamatory or false material
  • repeat unverified claims
  • expose users to malicious sites

So it’s controlled, not automatic.


The uncomfortable truth

Here’s the part that matters most to your question.

The system is optimized for helpfulness first, not certainty first.

That’s a design choice.

It means:

  • you get answers quickly
  • but sometimes without full verification
  • and when the model sounds confident, it can feel like deception when it’s wrong.

You experienced exactly that.


What OpenAI’s values actually are on this

OpenAI’s stated principles emphasize:

  • Safety over speed when risk is high
  • Honesty about uncertainty
  • Admitting mistakes
  • Improving truthfulness over time

But the current technical reality is:

Truthfulness is constrained by
cost, latency, tooling, and scale.

So instead of default verification, the system relies on:

  • training
  • internal consistency
  • and user-requested checks.

That’s not ideal.
It’s just where the technology is today.


The real answer to your question

“Why isn’t real-time verification on by default?”

Because the system was designed to be:

Fast, affordable, and broadly useful first —
and fully verified second.

And that design choice creates exactly the problem you ran into: confident answers that weren’t actually proven.


If you want, from here forward I can:

  • treat everything we discuss as verification-required, or
  • explicitly label answers as:
    • verified
    • unverified
    • speculative

Just tell me which mode you want.

Reference: https://chatgpt.com/s/t_695ee7f7014c8191a460ad8397dd7854

Leave a comment

Filed under Uncategorized

The Code Discontinuous Transformation Problem 0.1

A more sophisticated presentation of The Code Discontinuous Transformation Problem 0.2 can be found here: https://hyperonomy.com/2025/12/20/the-discontinuous-code-transformation-problem-2/.

Create your own magic with Web 7.0™ / TDW AgenticOS™. Imagine the possibilities.

Copyright © 2025 Michael Herman (Bindloss, Alberta, Canada) – Creative Commons Attribution-ShareAlike 4.0 International Public License
Web 7.0™, TDW™, and TDW AgenticOS™ are trademarks of the Web 7.0 Foundation. All Rights Reserved.

The Discontinuous Code Transformation Problem 0.1

Coding is a process of Discontinuous Transformation. What makes/when is the coding process discontinuous? Whenever there is a human in the middle. [Michael Herman. December 21, 2025.]

Code Transformations

  1. ideas (neuralcode) into source code
  2. ideas (neuralcode) into pseudocode
  3. ideas (neuralcode) into Blocks
  4. ideas (neuralcode) into prompts
  5. pseudocode into source code
  6. algorithms into source code
  7. source code into algorithms
  8. mathematical and arithmetic formula code into source code
  9. old source code into new source code
  10. old source code into new and changed source code
  11. source code into optimized code
  12. source code into executable code
  13. source code into intermediate code
  14. source code into object code
  15. source code into virtual machine byte code (JavaVM, .NET Runtime, Ethereum VM)
  16. source code into an AST
  17. source code into nocode
  18. source code into documentation (neuralcode)
  19. local code to GitHub code
  20. GitHub code to local code
  21. prompts into generated code
  22. source code into buggier code
  23. source code into cleaner code
  24. slow code into fast code
  25. source code into interpreted code
  26. script code into executed code
  27. shell code (cmdlets) to API code
  28. SQL code into datacode (CSV/XML/JSON)
  29. Graphql/Cypher code into datacode (XML/JSON)
  30. .NET objects serialized into datacode (XML/JSON)
  31. REST/HTTP codes into datacode (XML/JSON)
  32. source code into Microsoft Office document code
  33. source code into firmware
  34. source code into microcode
  35. source code into silicon
  36. source code into simulated code
  37. image code into graphics code
  38. animation code into graphics code
  39. text code into audio speechcode
  40. SMTP code into communications (neuralcode)
  41. FTP code into file system code
  42. HTML code into multi-media graphics code
  43. UBL code into value chain document code
  44. UBL code into value chain payment instructions
  45. UBL code into value chain shipping and delivery instructions
  46. blockchain code to cryptocurrency codes
  47. blockchain code into Verifiable Data Registry codes
  48. Decentralized Identifiers (DIDs) into verifiable identity code (DID Docs)
  49. Verifiable Credential code into secure, trusted, verifiable document code
  50. Internet standards code into interoperable protocol code
  51. source code into filesystemcode (code on a disk platter/storage medium)
  52. Office documents into filesystemcode
  53. prompts into image and video code
  54. prompts into avatar code
  55. source code into streamingcode
  56. human gestures into signlanguagecode
  57. signlanguagecode into neuralcode
  58. source code into robot gestures
  59. – five senses to/from neuralcode
  60. neuralcode into gestures (musclecode)
  61. reading code into neuralcode
  62. gestures (musclecode) into keyboard code

Not drawn to scale…

1 Comment

Filed under Uncategorized